

Fig. 2. A view along a of the packing of molecules in the unit cell. The H atoms are omitted for clarity.

Discussion. The $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ compounds are isostructural with the corresponding Co^{11} (Haider, Hashem, Malik \& Hursthouse, 1980) and $\mathrm{Ni}^{\mathrm{II}}$ (Malatesta \& Mugnoli, 1981) derivatives. The metal atoms in a square-planar arrangement lie within 0.031 (4) \AA (I) and 0.026 (4) \AA (II) of the mean plane of the $\mathrm{N}_{2} \mathrm{O}_{2}$ atoms. The $\mathrm{O} / \mathrm{N}-M-\mathrm{O} / \mathrm{N}$ angles (cis) in the square plane are within 5° of the ideal value of 90°. The $M-\mathrm{N}$ and $M-\mathrm{O}$ bonds are virtually identical in the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ compounds $[\mathrm{Co}-\mathrm{O}=1.855$ (4), 1.847 (4); $\mathrm{Co}-\mathrm{N}=1.866$ (4), $\quad 1.861$ (4); $\quad \mathrm{Ni}-\mathrm{O}=1.851$ (4), 1.858 (4); $\mathrm{Ni}-\mathrm{N}=1.852$ (4), 1.859 (4) \AA], but longer (by $\sim 0.06 \AA$) in the $\mathrm{Cu}^{\mathrm{II}}$ and (by $\sim 0.12 \AA$) in the $\mathrm{Pd}^{\mathrm{II}}$ derivatives, as expected from the relative atomic-radii difference.

As in the case of other tetradentate Schiff-base complexes (Calligaris, Nardin \& Randaccio, 1972), the dimensions of the ligand in the present series are independent of the nature of the metal and it shows extensive delocalization. However, compared with the free ligand (Haider, Hashem, Malik \& Hursthouse, 1981) the bonds in the chelate rings in all four compounds are systematically modified. The changes in
ligand bonds, effected by metal coordination, although small ($<0.06 \AA$), are real. The $N(1)-C(4)-C(5)-N(2)$ torsion angles are 30.5 (7) ${ }^{\circ}$ in (I) and 32.6 (7) ${ }^{\circ}$ in (II). The $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(16)$ and $\mathrm{O}(2)-\mathrm{C}(8)-$ $C(17)-C(22)$ torsion angles showing the non-planarity of the phenyl rings with the respective chelate rings are 13.6 (7) and $-16 \cdot 1$ (7) and 10.9 (7) and -12.2 (7) ${ }^{\circ}$, in (I) and (II), respectively. All these values are comparable with those in the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ compounds.

KMAM thanks the Association of Commonwealth Universities for an Academic Staff Fellowship (198384) and Dhaka University for leave. We also thank the University Grants Commission (BD) for financial support of our work on Schiff-base complexes and the SERC for support of the crystallographic facilities.

References

Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Davies, K. (1983). SNOOPI. A Program for Drawing Crystal and Molecular Diagrams. Univ. of Oxford, England.
Haider, S. Z., Hashem, A., Malik, K. M. A. \& Hursthouse, M. B. (1980). J. Bangladesh Acad. Sci. 4, 139-150.

Haider, S. Z., Hashem, A., Malik, K. M. A. \& Hursthouse, M. B. (1981). J. Bangladesh Acad. Sci. 5, 85-92.

Jones, R. A., Hursthouse, M. B., Malik, K. M. A. \& Wilkinson, G. (1979). J. Am. Chem. Soc. 101, 4128-4139.
Malatesta, V. \& Mugnoli, A. (1981). Can. J. Chem. 59, 2766-2770.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. A Program for Least-squares Plane Calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1980). SHELX80. A program for crystal structure determination. Univ. of Göttingen.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1985). C41, 31-34

Structure of Trisodium Fructose 1,6-Diphosphate Octahydrate, $\mathbf{3 N a}{ }^{+} . \mathbf{C}_{6} \mathbf{H}_{\mathbf{1 1}} \mathbf{O}_{\mathbf{1 2}} \mathbf{P}_{2}^{\mathbf{3}-\mathbf{8 H}} \mathbf{2} \mathbf{O}$

By N. Narendra, T. P. Seshadri and M. A. Viswamitra
Department of Physics and ICMR Centre on Genetics and Cell Biology, Indian Institute of Science, Bangalore 560 012, India

(Received 14 June 1984; accepted 18 September 1984)

Abstract

M_{r}=550 \cdot 2\), monoclinic, $P 2_{1}, a=7.085$ (1), $b=11 \cdot 645$ (3), $c=13.290$ (3) $\AA, \beta=102 \cdot 26(1)^{\circ}, U$ $=1071.5 \AA^{3}, Z=2, D_{m}=1 \cdot 708, D_{x}=1.704 \mathrm{Mg} \mathrm{m}^{-3}$,

0108-2701/85/010031-04\$01.50 $\mathrm{Cu} K \alpha, \lambda=1.5418 \AA, \mu=3.311 \mathrm{~mm}^{-1}, F(000)=572$, $T=300 \mathrm{~K}$, final R for 2303 unique reflections is 0.055 . The phosphate residues at the 1 and 6 positions have

different phosphate ester bond lengths $[\mathrm{P}(1)-\mathrm{O}(1)$ $=1.591(3) ; \quad \mathrm{P}(2)-\mathrm{O}(6)=1.622$ (3) $\AA]$. The $\mathrm{P}(2)-$ O (6) bond length corresponds to a high-energy $\mathrm{P} \sim \mathrm{O}$ bond. The conformation about the $\mathrm{C}(5)-\mathrm{C}(6)$ bond is gauche-trans in contrast to gauche-gauche about $\mathrm{C}(1)-\mathrm{C}(2)$. The furanose ring is in the ${ }^{3} E$ conformation. The two endocyclic $\mathrm{C}-\mathrm{O}$ bonds $\mathrm{C}(2)-$ $\mathrm{O}(5)$ and $\mathrm{C}(5)-\mathrm{O}(5)$ are nearly equal [1.434(5); 1.448 (5) $\AA]$. The Na^{+}ions bind to the phosphate groups only indirectly through water bridges. The ester oxygen $\mathrm{O}(1)$ is also a binding site for a Na^{+}cation.

Introduction. Fructose 1,6 -diphosphate ($\mathrm{F} 1,6-\mathrm{dp}$) is an intermediate in glycolysis. It is classified as a 'lowenergy' phosphate as its free energy of hydrolysis is small, $-16.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$, compared to that of 'highenergy' phosphate such as phosphoenolpyruvate (PEP) ($-58.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (Lehninger, 1973). We report here the structure of $\mathrm{Na}_{3} \mathrm{~F} 1,6-\mathrm{dp}$. This investigation follows our earlier studies on metal salts of glucose 6-phosphate and glucose 1-phosphate (Katti, Seshadri \& Viswamitra, 1982; Narendra, Seshadri \& Viswamitra, 1984). This analysis provides the first precise molecular parameters for a fructose attached to a phosphate group.

Experimental. Crystals grown from aqueous solution of compound by diffusion of acetone. D_{m} by flotation in acetone/bromoform. Unit-cell dimensions and space group from rotation and Weissenberg photographs; cell parameters from least-squares refinement of 25 highangle reflections; Enraf-Nonius CAD-4 diffractometer. Max. $\quad \sin \theta / \lambda=0.63 \AA^{-1}, \quad$ crystal $0.45 \times 0.62 \times$ $1.12 \mathrm{~mm}, \omega-2 \theta$ scan; h, k, l range $\pm 8,0,14$ and 0,16 . 2608 reflections scanned, 2303 unique (including unobserveds) used in analysis; $R_{\text {int }}=0.056$; two strong reflections (008 and 266) monitored periodically during data collection showed crystal stable to X-rays: max. and min. intensities 40113 and 38 192; 65792 and 61971 respectively. Lorentz and polarization corrections applied. Structure solved by direct methods with MULTAN (Main et al., 1980). The two phosphate groups located in E map with highest combined figure of merit (2.9411); remaining non-H atoms located from subsequent difference Fourier calculations, full-matrix least-squares refinement (SHELX76; Sheldrick, 1976). Further difference Fourier maps revealed all H atoms. Further refinement including H atoms (isotropic) and non-H atoms (anisotropic) converged at $R=$ $0.055, R_{w}=0.061, S=3.18$; function minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{o}\right)$. Max. and min. residual electron density in final difference Fourier map 0.66 and $-0.78 \mathrm{e} \AA^{-3}$. Scattering factors for non-H atoms from Cromer \& Waber (1965), for H atoms from Stewart, Davidson \& Simpson (1965). Max. Δ / σ for non-H atoms 0.08 , for H 3.61 .

Discussion. Positional parameters for the atoms are given in Table 1.* Bond lengths and bond angles are listed in Table 2. The molecular structure and the atom numbering scheme are shown in Fig. 1. The hydrogenbonding environment of the phosphate groups as viewed along \mathbf{b} is shown in Fig. 2.

The phosphate group. As the compound is a trisodium salt, the two phosphate groups are expected to carry three negative charges. The bond lengths $\mathrm{P}(1)-\mathrm{O}(8)$ and $\mathrm{P}(1)-\mathrm{O}(9)$ are 1.484 (4) and 1.476 (4) \AA, respectively. We may therefore expect a single negative charge to be distributed between these $\mathrm{P}-\mathrm{O}$ bonds. The three terminal $\mathrm{P}-\mathrm{O}$ bonds $\mathrm{P}(2)-$ $\mathrm{O}(10), \mathrm{P}(2)-\mathrm{O}(11)$ and $\mathrm{P}(2)-\mathrm{O}(12)$ are nearly equal

[^0]Table 1. Fractional coordinates ($\times 10^{4}$; for $\mathrm{H} \times 10^{3}$) with equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{2}\right)$

For H atoms the temperature factors are the refined isotropic values. E.s.d.'s are given in parentheses.

$$
U_{e q}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }} / U_{\text {lso }}$
P(1)	3494 (1)	3629	2480 (1)	1.80 (10)
O(7)	2855 (6)	4849 (4)	2030 (3)	3.55 (12)
$\mathrm{O}(8)$	4983 (5)	3160 (4)	1958 (2)	2.79 (10)
$\mathrm{O}(9)$	1712 (5)	2961 (5)	2449 (3)	3.68 (13)
P (2)	12441 (1)	3826 (1)	7494 (1)	1.07 (10)
$\mathrm{O}(10)$	13903 (4)	4148 (3)	6866 (2)	2.01 (10)
O(11)	12281 (5)	2530 (3)	7593 (2)	1.78 (10)
$\mathrm{O}(12)$	12736 (5)	4469 (3)	8512 (2)	2.13 (10)
O(1)	4598 (4)	3863 (3)	3635 (2)	1.88 (10)
C(1)	3743 (5)	4565 (4)	4310 (3)	1.33 (10)
C(2)	5307 (6)	5341 (4)	4926 (3)	1.28 (11)
C(3)	6127 (6)	6233 (4)	4279 (3)	1.28 (10)
C(4)	8161 (6)	6452 (4)	4937 (3)	1.57 (11)
O(5)	6945 (4)	4645 (3)	5366 (2)	1.64 (10)
C(5)	8734 (6)	5257 (4)	5394 (3)	1.30 (10)
C(6)	9899 (7)	5317 (4)	6477 (3)	1.88 (12)
$\mathrm{O}(6)$	10310 (4)	4153 (3)	6834 (2)	1.71 (10)
$\mathrm{O}(2)$	4588 (5)	5910 (3)	5691 (2)	1.81 (10)
$\mathrm{O}(3)$	4902 (4)	7204 (3)	4106 (3)	1.87 (10)
$\mathrm{O}(4)$	9562 (5)	6874 (4)	4398 (3)	2.84 (11)
$\mathrm{Na}(1)$	8212 (3)	2492 (2)	-529 (2)	2.67 (10)
$\mathrm{Na}(2)$	8319 (3)	5261 (2)	-331(2)	2.81 (10)
$\mathrm{Na}(3)$	2708 (3)	7658 (2)	5177 (2)	2.56 (10)
OW(1)	5272 (5)	1375 (4)	8812 (3)	2.63 (10)
OW(2)	4642 (6)	1185 (3)	823 (3)	2.68 (10)
OW(3)	8584 (6)	3128 (6)	3410 (3)	4.62 (15)
OW(4)	9255 (5)	8812 (4)	37 (2)	2.79 (10)
OW(5)	9548 (5)	1480 (4)	1031 (3)	2.80 (10)
OW(6)	9685 (5)	6254 (4)	1260 (3)	2.82 (10)
OW(7)	7554 (5)	3933 (4)	8133 (3)	2.72 (10)
OW(8)	6148 (5)	3818 (4)	137 (3)	$3 \cdot 11$ (11)
H(1)	329 (9)	403 (7)	478 (5)	0.75 (48)
$\mathrm{H}^{\prime}(1)$	274 (11)	500 (8)	399 (6)	3.43 (70)
H(3)	638 (6)	592 (4)	347 (3)	0.99 (30)
H(4)	804 (8)	702 (6)	550 (4)	0.47 (44)
H(5)	962 (7)	484 (5)	491 (5)	0.07 (7)
H(6)	1102 (10)	578 (9)	666 (5)	2.56 (65)
$\mathrm{H}^{\prime}(6)$	897 (9)	549 (7)	693 (5)	$0 \cdot 10$ (60)
HW(8)	585 (11)	1383 (10)	1077 (6)	1.84 (73)
$\mathrm{H}^{\prime} W(8)$	502 (13)	396 (12)	935 (7)	$2 \cdot 16$ (107)
O (7) H	378 (11)	535 (8)	187 (6)	3.52 (74)
$\mathrm{O}(2) \mathrm{H}$	442 (11)	586 (9)	643 (6)	3.75 (73)
$\mathrm{O}(3) \mathrm{H}$	546 (11)	777 (9)	367 (6)	2.59 (74)
$\mathrm{O}(4) \mathrm{H}$	930 (11)	695 (9)	366 (6)	2.75 (72)

Table 2. Distances and angles

Bond lengths (\AA)			
$\mathrm{P}(1)-\mathrm{O}(7)$	1.570 (5)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.397 (5)
$\mathrm{P}(1)-\mathrm{O}(8)$	1.484 (4)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.539 (6)
$\mathbf{P}(1)-\mathrm{O}(9)$	1.476 (4)	$\mathrm{C}(2)-\mathrm{O}(5)$	1.434 (5)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.591 (3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.540 (6)
$\mathrm{P}(2)-\mathrm{O}(10)$	1.509 (3)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.414 (6)
$\mathrm{P}(2)-\mathrm{O}(11)$	1.521 (4)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.538 (6)
$\mathrm{P}(2)-\mathrm{O}(12)$	1.521 (3)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.429 (6)
$\mathrm{P}(2)-\mathrm{O}(6)$	1.622 (3)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.448 (5)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.439 (5)	C(5)-C(6)	1.501 (6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.526 (6)	$\mathrm{C}(6)-\mathrm{O}(6)$	I. 445 (6)
Bond angles (${ }^{\circ}$)			
$\mathrm{O}(7)-\mathrm{P}(\mathrm{I})-\mathrm{O}(8)$	109.3 (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	109.6 (3)
$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(9)$	106.9 (2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(5)$	103.9 (3)
$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(1)$	104.8 (2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)$	109.0 (3)
$\mathrm{O}(8)-\mathrm{P}(1)-\mathrm{O}(9)$	118.8 (2)	$\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{O}(2)$	111.1 (3)
$\mathrm{O}(8)-\mathrm{P}(1)-\mathrm{O}(1)$	$105 \cdot 1$ (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$102 \cdot 3$ (3)
$\mathrm{O}(9)-\mathrm{P}(1)-\mathrm{O}(1)$	111.1 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	109.8 (3)
$\mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(11)$	111.5 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	$115 \cdot 3$ (3)
$\mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(12)$	112.9 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$102 \cdot 2$ (3)
$\mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(6)$	108.2 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	116.0 (4)
$\mathrm{O}(11)-\mathrm{P}(2)-\mathrm{O}(12)$	$114 \cdot 2$ (2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	110.8 (4)
$\mathrm{O}(11)-\mathrm{P}(2)-\mathrm{O}(6)$	101.6 (2)	$\mathrm{C}(2)-\mathrm{O}(5)-\mathrm{C}(5)$	111.1 (3)
$\mathrm{O}(12)-\mathrm{P}(2)-\mathrm{O}(6)$	107.5 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$106 \cdot 2$ (3)
$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$120 \cdot 8$ (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.4 (4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.5 (3)	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	110.3 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.7 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(6)$	107.6 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(5)$	108.4 (3)	$\mathrm{P}(2)-\mathrm{O}(6)-\mathrm{C}(6)$	119.8 (3)
Sodium coordination distances (\AA) : average e.s.d. $=0.005 \AA$			
$\mathrm{Na}(1)-\mathrm{O} W\left(1^{\text {II }}\right.$)	2.454	$\mathrm{Na}(2)-\mathrm{OW}\left(2^{\text {LV }}\right.$)	2.325
-OW(4ili)	2.348	$-\mathrm{O} W\left(4^{\text {lii }}\right)$	2.381
-OW(5)	2.398	-OW(5v)	2.400
-OW(6ili)	2.420	$-\mathrm{O} W\left(6^{1}\right)$	2.424
$-\mathrm{O} W\left(7^{\text {i }}\right.$)	2.417	$-\mathrm{OW}\left(7^{\text {i }}\right.$)	2.526
-OW(8)	2.420	$-\mathrm{O} W\left(8^{\prime}\right)$	2.446
$\mathrm{Na}(3)-\mathrm{O}\left(1^{\text {V }}\right.$)	2.612		
-O(2)	2.449		
$-\mathrm{O}\left(3^{\text {i }}\right.$)	2.379		
-O(4vi)	2.428		
$-\mathrm{O}\left(5^{\text {vi }}\right)$	2.452		
-OW(3ri)	2.322		

Symmetry code: (i) x, y, z; (ii) $x, y,-1+z$; (iii) $2-x,-\frac{1}{2}+y,-z$; (iv) $1-x, \frac{1}{2}+y,-z$; (v) $2-x, \frac{1}{2}+y,-z$; (vi) $1-x, \frac{1}{2}+y, 1-z ;$ (vii) $-1+x, y$, z.
[1.509 (3), 1.521 (4), $1.521(3) \AA]$, as found in Na_{2} glucose 1-phosphate (Narendra et al., 1984). Presumably the two negative charges are distributed between $O(10), O(11)$ and $O(12)$. The longest of the terminal $\mathrm{P}-\mathrm{O}$ bonds, $\mathrm{P}(1)-\mathrm{O}(7)=1.570$ (5) \AA, is close to the $\mathrm{P}-\mathrm{O}(\mathrm{H})$ distance of $1.564 \AA$ found in Na phosphoenolpyruvate (Katti, Hosur \& Viswamitra, 1981). The phosphates at the 1 and 6 positions have different phosphate ester bond lengths $[\mathrm{P}(1)-\mathrm{O}(1)=1.591$ (3); $\mathrm{P}(2)-\mathrm{O}(6)=1.622(3) \AA]$. The $\mathrm{P}(2)-\mathrm{O}(6)$ bond length corresponds to a high-energy $\mathrm{P} \sim \mathrm{O}$ bond (Katti et al., 1981). The average $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle is 109.5°, range 101.6-118.8.

The furanose ring. The furanose ring is in the ${ }^{3} E$ conformation (Stoddart, 1971) as found in the fructofuranosyl moiety of sucrose (Brown \& Levy, 1973), with $\mathrm{C}(3)$ displaced from the $\mathrm{O}(5)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ plane by 0.580 (4) \AA on the opposite side (exo) of C(6) and $\mathrm{O}(2)$ as in sucrose. The two endocyclic $\mathrm{C}-\mathrm{O}$ bonds $C(2)-O(5)$ and $C(5)-O(5)$ are nearly equal. The internal $\mathrm{C}(2)-\mathrm{O}(5)-\mathrm{C}(5)$ angle $\left[111 \cdot 1(3)^{\circ}\right]$ is the only internal angle in the furanose ring to be close to the
tetrahedral bond angle (Sundaralingam, 1965). The Cremer-Pople (1975) puckering parameters are Q_{2} $=0.372(1) \AA$ and $\varphi_{2}=254.17(16)^{\circ}$.

The torsion angles $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(5)$ and $O(1)-C(1)-C(2)-C(3)$ are $-50.0(4)$ and $65.6(4)^{\circ}$ respectively. The conformation about the $\mathrm{C}(1)-\mathrm{C}(2)$ bond is therefore gauche-gauche (gg). The torsion angles $\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(5)$ and $\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-$ $C(4)$ are 60.2 (4) and $178 \cdot 6$ (3) ${ }^{\circ}$ and the conformation about the $\mathrm{C}(5)-\mathrm{C}(6)$ bond is therefore gauche-trans ($g t$).

Sodium coordination. There are three crystallographically independent sodium ions in the structure. The Na^{+}ions do not interact directly with the phosphate O atoms. $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ are completely surrounded by water molecules and interact with phosphate O atoms through water bridges as found in Na_{2} deoxycytidine 5^{\prime}-phosphate $7 \mathrm{H}_{2} \mathrm{O}$ (Pandit, Seshadri \& Viswamitra, 1983). $\mathrm{Na}(3)$ interacts through $\mathrm{O} W(3)$, the exocyclic hydroxyl oxygen atoms, phosphate ester oxygen $O(1)$ and ring oxygen $O(5)$.

Fig. 1. Molecular structure and atomic numbering.

Fig. 2. The environment of the two phosphate groups. Dotted lines indicate hydrogen bonds.

Hydrogen bonding.* There is no intramolecular hydrogen bonding. The phosphate groups are involved in extensive hydrogen bonding with water molecules and exocyclic hydroxyls as shown in Fig. 2. The ring oxygen $O(5)$ and phosphate ester oxygen $O(1)$ are not involved in hydrogen bonding. The phosphate ester oxygen $O(6)$ accepts a hydrogen bond from water molecule $\mathrm{O} W(7)$. Each of the three furanose hydroxyl groups has two close contacts - to a Na^{+}ion and a phosphate oxygen. The symmetry-related molecules are linked by $\mathrm{O}(3) \cdots \mathrm{O}(10)$ and $\mathrm{O}(4) \cdots \mathrm{O}(11)$ hydrogen bonds.

We acknowledge financial support from the Department of Science and Technology.

* See deposition footnote.

References

Brown, G. M. \& Levy, H. A. (1973). Acta Cryst. B29, 790-797.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Katti, S. K., Hosur, M. V. \& Viswamitra, M. A. (1981). Acta Cryst. B37, 834-838.
Katti, S. K., Seshadri, T. P. \& Viswamitra, M. A. (1982). B38, 1136-1 140.
Lehninger, A. L. (1973). Bioenergetics, p. 42. Menlopark, California: W. A. Benjamin.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Narendra, N., Seshadri, T. P. \& Viswamitra, M. A. (1984). Acta Cryst. C40, 1338-1340.
Pandit, J., Seshadri, T. P. \& Viswamitra, M. A. (1983). Acta Cryst. C39, 342-345.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Stoddart, J. F. (1971). Stereochemistry of Carbohydrates, p. 99. New York: John Wiley.
Sundaraling am, M. (1965). J. Am. Chem. Soc. 87, 599-606.

Structure of the Hydrated Complex between Lanthanum Chloride and 1,5,12,16,23,26,29,32-Octaoxa $\left[10^{3,14}\right][5 \cdot 5]$ orthocyclophane, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{8} \cdot \mathrm{LaCl}_{x}(\mathrm{OH})_{3-x} \cdot \mathbf{4} \mathrm{H}_{2} \mathrm{O}$

By Franco Benetollo
Istituto di Chimica e Tecnologia dei Radioelementi de CNR, 35100 Padova, Italy

Gabriella Bombieri
Dipartimento di Chimica Inorganica e Struttura Molecolare, Università di Messina, 98100 Messina, Italy

Giovanni de Paoli
Istituto di Chimica Generale, Università di Padova, 35100 Padova, Italy

and David L. Hughes, David G. Parsons and Mary R. Truter*
Molecular Structures Department, Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, England
(Received 21 June 1984; accepted 18 September 1984)

Abstract. $M_{r}=763.6$ for $x=2.5$ (1), $y=4.5$ (2), triclinic, $\quad P \overline{1}, \quad a=11.325$ (2),$\quad b=12.934$ (3),$\quad c=$ 11.551 (4) $\AA, \quad \alpha=104.80$ (2),$\quad \beta=100.62$ (2), $\quad \gamma=$ $101 \cdot 15(2)^{\circ}, \quad U=1555 \AA^{3}, \quad Z=2, \quad D_{m}=1.637, \quad D_{x}$ $=1.631 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ (Мо $K \bar{\alpha})=0.71069 \AA, \mu($ Мо $K \bar{\alpha})=$ $16.5 \mathrm{~cm}^{-1}, F(000)=744, T=295 \mathrm{~K}, R=0.032$ for

[^1]4038 observations (all data with $3^{\circ}<\theta \leq 22 \cdot 5^{\circ}$). Each unit cell contains a pseudocentrosymmetric 'dimer' $\left[\mathrm{Cl}\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{8}\right) \mathrm{La} X\right]_{2}$ where X is the site occupied by Cl^{-}in one half and OH^{-}in the other half, with an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond across the centre of symmetry. The La atom is ten-coordinated by the eight O atoms of the ligand in an end-capped trigonal prism with Cl and X on two faces. Another Cl^{-}anion and water molecules occupy disordered sites in channels through the crystal.

[^0]: * Lists of structure factors, anisotropic thermal parameters, torsion angles, hydrogen-bond distances and details of least-squares plane calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39749 (21 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

[^1]: * Address for correspondence: Department of Chemistry, University College, 20 Gordon Street, London WC1H 0AJ, England.

